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Abstract
We present a calculation of the one-particle equal time correlation function
ρ(x) for the one-dimensional (1D) Hubbard model in the infinite U limit. We
consider the zero temperature spin incoherent regime, which is obtained by
first taking the limit U → ∞ and then the limit T → 0. Using the determinant
representation for ρ(x), we derive analytical expressions for both large and
small x at an arbitrary filling factor 0 < � < 1/2. The large x asymptotics of
ρ(x) is found to be remarkably accurate starting from x sin(2π�) ∼ 1. We find
that the one-particle momentum distribution function ρ(k) is a smooth function
of k, and ρ ′(k) is peaked at k = 2kF in contrast to spin-coherent liquid obeying
the Luttinger theorem.

PACS numbers: 71.10.Pm, 02.30.Ik

Recent progress in the calculation of the dynamical correlation functions in the spin-incoherent
gas of impenetrable spin 1/2 fermions [1–3] have attracted a lot of interest [4]. It was found
that the infrared asymptotic behavior of the correlation functions, although consistent with
the assumption of spin–charge separation, is not adequately described by the Luttinger model.
This is to be contrasted with the asymptotic behavior of the previously studied correlation
functions of the infinite U Hubbard model in the ‘antiferromagnetic’ ground state, understood
as a limit of the ground state of the Hubbard model as U → ∞. In the latter case, the Luttinger
model gives correct predictions [5–7].

In this paper we investigate the spin-incoherent regime in the 1D Hubbard model [8]

H = −
∑
x;σ

(
ψ †

x,σ ψx+1,σ + h.c.
)

+
∑

x

Unx,↑nx,↓, (1)

in the limit U → ∞. Here ψx,σ are fermion fields with the spin index σ = ↑,↓, and nx,σ =
ψ

†
x,σ ψx,σ are the local fermion number operators. We will concentrate on the one particle

equal time

ρ(x) = 〈
ψ

†
x,↑ψ0,↑

〉
, (2)
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at an arbitrary fixed filling factor

� = 1
2 〈nx,↑ + nx,↓〉 (3)

and in the limit T → 0.

The ground state of the model (1) at infinite U is infinitely degenerate with respect to local
spin rotations [5]. Since the limit T → 0 is taken after the limit U → ∞, the thermal average
〈〉 in (2) reduces to the average over the infinitely degenerate ground state. This is what we
call an average taken in the zero temperature spin-incoherent regime of the model.

Recently, the determinant representation for the dynamical correlation functions of the
infinite U Hubbard model (1) in the spin-incoherent regime was obtained [9]. For the equal
time correlation function (2), the determinant representation, given in [9], can be written in
the following form:

ρ(x) = 1

8π i

∮
|z|=1

dz

z
F (z)B−−(z) det(Î + V̂ )(z). (4)

Here the function F(z) is

F(z) = 1 +
z

2 − z
+

1

2z − 1
. (5)

The determinant

det(Î + V̂ ) =
∞∑

N=0

1

N !

∫ K

−K

dk1 . . .

∫ K

−K

dkN

∣∣∣∣∣∣∣
V (k1, k1) · · · V (k1, kN)

...
. . .

...

V (kN, k1) · · · V (kN, kN)

∣∣∣∣∣∣∣ (6)

is the Fredholm determinant of a linear integral operator V̂ with the kernel

V (k, p) = e+(k)e−(p) − e+(p)e−(k)

2 tan
[

1
2 (k − p)

] (7)

defined on [−K,K] × [−K,K]. Here

K = 2π� (8)

is twice the Fermi momentum. The functions e± entering equation (7) are defined as follows

e−(k) = 1√
π

e−ikx/2, (9)

e+(k) = i

2

1√
π

eikx/2(1 − z). (10)

The function B−−(z) is

B−−(z) =
∫ K

−K

dk e−(k)(Î + V̂ )−1e−(k). (11)

Consider the contour integral in equation (4). According to equations (7) and (10), the
Fredholm operator V̂ is linear in z. This implies [2] that the product B−−(z) det(Î − V̂ )(z) is
analytic in the complex z-plane. Therefore, the integral is given by the residue of the integrand
at the pole z = 1/2 of the function F(z)

ρ(x) = 1
4B−−(1/2) det(Î + V̂ )(1/2). (12)

Consider the short distance behavior of ρ(x) first. For any x the kernel (7) can be written
as a sum of 2x separable kernels (recall that x is a discrete variable, x = 0, 1, 2, . . .)

V (k, p) = z − 1

4π

2x∑
m=1

um(k)u∗
m(p), (13)
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where

um(k) =
{

ei(m− x
2 )k, m = 1, . . . , x

e−i(m− 3x
2 ), m = x + 1, . . . , 2x

. (14)

Therefore, det(Î + V̂ ) can be expressed in terms of the determinant

det(Î + V̂ ) = det2x(I + V) (15)

of an 2x × 2x matrix V:

V = z − 1

2π

(
Q P

P Q

)
. (16)

Here Q and P are the x × x matrices with the entries defined by

Qmn = sin[K(m − n)]

m − n
, n,m = 1, . . . , x (17)

Pmn = sin[K(m + n − x)]

m + n − x
, n,m = 1, . . . , x (18)

where

Qnn = P(x−n)n = K. (19)

For B−−(z) one has

B−− = 2 sin Kx

πx
− z − 1

4π
aT(I + V)−1b, (20)

where the 2x-dimensional vectors a and b are defined by

an =

⎧⎪⎪⎨
⎪⎪⎩

2 sin Kn√
πn

, n = 1, . . . , x

2 sin K(n − 2x)√
π(n − 2x)

, n = x + 1, . . . , 2x

(21)

and

bn = 2 sin K(n − x)√
π(n − x)

, n = 1, . . . , 2x. (22)

Equations (15) through (22) combined with (12) are convenient for the calculation of ρ(x) at
small enough x. For example,

ρ(0) = K

2π
, (23)

ρ(1) = sin K

2π
, (24)

ρ(2) = sin2 K

4π2
+

(2π − K) sin 2K

8π2
. (25)

With increasing x the complexity of the exact expression for ρ(x) grows rapidly.
Next, we calculate the long distance asymptotics of equation (2) using the determinant

representation (4). Technically, the asymptotic analysis will be similar to that carried out for
the continuous limit of the model in [2].

To calculate det(Î + V̂ ), we write the difference equation for the kernel (7):

V (k, p; x + 1) = e
i
2 (k−p)V (k, p; x) + ie−(k; x)e+(p; x) cos

k − p

2
. (26)
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From this equation it follows that

det(Î + V̂ )(x + 1; z) = det(Î + V̂ )(x; z)W(x; z), (27)

where

W(x) = det

[
1 + i

2B+−(x) i
2D−+(x)

i
2C+−(x) 1 + i

2A−+(x)

]
(28)

and

Aab =
∫ K

−K

dk ea(k) e−ik(Î + V̂ )−1[e−ikeb(k)], (29)

Bab =
∫ K

−K

dk ea(k)(Î + V̂ )−1eb(k), (30)

Cab =
∫ K

−K

dk ea(k) e−ik(Î + V̂ )−1eb(k), (31)

Dab =
∫ K

−K

dk ea(k) e−ik(Î + V̂ )−1eb(k). (32)

The indices a and b run through two values: a, b = ±.

The resolvent operator (Î + V̂ )−1 and, therefore, the functions (29)–(32) can be found
from the solution of the corresponding matrix Riemann–Hilbert problem [10]. The scheme of
the asymptotic solution of the matrix Riemann–Hilbert problem associated with the kernel (7)
is very similar to that given in [2]. It is based on the nonlinear steepest-descend method [11].
The main results of the asymptotic analysis are as follows. For z = 1/2

W(x; z = 1/2) = 2−K/π

[
1 +

ν2

2x

]
+ δW(x), (33)

where

ν = ln 2

π
. (34)

The residual term δW(x) decays as x−2 for x sin K � 1. Solving equation (27) with W given
by equation (33) one gets in the large x limit

det(Î + V̂ )(x) = eC(K)(sin K)
ν2

2 · 2− K
π

xx
ν2

2 , (35)

where C(K) is independent of x. Numerically, exp[C(K)] is close to unity for all K, as can
be seen in figure 1. The exact expression for C(0) is given in [2] and is, numerically, equal to
0.0550839 . . . . This agrees perfectly with figure 1.

The asymptotic formula for the one particle correlation function (4) reads

ρ(x) = iπ2
√

2 eC(K)(sin K)
ν2

2

cosh2 (Kν/2)
e−νKxx

ν2

2

[
(2 sin K)−iν

�(−iν/2)2

eiKx

x1+iν
− (2 sin K)iν

�(iν/2)2

e−iKx

x1−iν

]
(36)

with the relative correction of the order of x−1. The formula (36) is the main result of the
paper.

Let us discuss equation (36). The structure of the correlation function is essentially the
same as for the impenetrable fermion gas [1, 2, 12]. The correlation function contains the
exponentially decaying factor exp(−νKx), and factors obeying the power law scaling.
The complex-valued anomalous exponents do not depend on K or, equivalently, on the filling

4
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Figure 1. The constant C(K) in equations (35) and (36) plotted as a function of K. The plot data
were obtained from the comparison of the asymptotic formula (35) with the numerically calculated
Fredholm determinant (6).

Figure 2. Correlation function ρ(x) plotted as a function of K for x = 1, . . . , 4. The asymptotic
result (36) (solid line) is in good agreement with the exact result (dotted line) even for small
x sin K.

factor �. A similar situation takes place for the infinite U Hubbard model in the Luttinger
regime: the Luttinger scaling exponents do not depend on the filling factor [7]. The results
for the continuous model, impenetrable fermion gas [1, 2, 12], can be recovered by taking the
limit K → 0 in equation (36) at a fixed Kx.

Formally, the asymptotic formula given in equation (36) is valid for x sin K � 1.

Nevertheless, it is remarkably good even for x sin K ∼ 1 as can be seen from figure 2,
where the exact expression obtained from equations (15) through (22) is compared with the
asymptotics equation (36).

Finally, consider the momentum distribution function

ρ(k) =
∞∑

x=−∞
e−ikxρ(x). (37)
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(c)

(d)(b)

(a)

Figure 3. Momentum distribution function ρ(k) (thick line) and its derivative −dρ(k)/dk (dotted
line) for different filling factors � : (a) � = 1/8; (b) � = 1/4; (c) � = 0.45; and (d) � = 0.49. The
Fermi–Dirac distribution (thin line) corresponding to these filling factors is shown for comparison.
The function ρ(k) satisfies ρ(k) = ρ(−k).

Due to the exponentially decaying term in the asymptotic expression (36), the function ρ(k)

is continuous with all its derivatives for all k. Combining the short distance representation
(15)–(22) and the long distance expansion (36) we plot ρ(k) for 0 � k � π at different
filling factors � in figure 3. Note that the smoothness of ρ(k) in the spin-incoherent regime,
considered here, is in contrast with the Luttinger regime considered in [5], where dρ(k)/dk is
singular at the Fermi momentum kF = K/2, in accordance with the Luttinger theorem [13].
Another peculiarity of the spin-incoherent regime, seen in figure 3, is that dρ(k)/dk is peaked
around k = 2kF rather than at k = kF predicted by the Luttinger theorem.
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